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Effect of Damage in Neural Networks 
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The effect of damage on the pattern recognition in the Hopfield-model of neural 
networks is studied. It is assumed that in a damaged network the synaptic 
efficacies J~, j =  Jj, i between pairs of neurons Si and Sj follow the Hebb rule with 
probability (1 - p )  and are equal to zero with probability p. Numerical simula- 
tions are performed for a net consisting of 400 neurons. It is investigated in 
detail how the retrieval of noisy patterns and the storage capacity of the net 
depends, for varying initial noise, on the concentration p of the damaged 
synaptic efficacies. 
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1. I N T R O D U C T I O N  

In recent years, a large number of neural network models has been 
investigated (for recent reviews see, e.g., refs. 1-4). Perhaps the most promi- 
nent one is the Hopfield model, ~5) which combines the early work of 
McCulloch and Pitts, ~6) Hebb, ~7) and Little ~8) with modern ideas from spin- 
glass theory. 

The Hopfield model has been studied extensively theoretically and has 
also found practical applications. The long-time retrieval behavior of the 
net, in the (thermodynamic) limit of an infinite number of neurons and for 
random nominated patterns, has been explored theoretically by Amit 
et  al. (9~ and the first attempts to make neural net chips were largely based 
on the Hopfield model. (1~ 

The Hopfield network consists of N neurons. Each neuron can be in 
two states Si = +_1: In Si = 1, the neuron is firing, in S /=  - 1 ,  the neuron 
is quiescent. Pairs of neurons are coupled by bonds Ji.j, which represent 
the synaptic efficacies between them. 

i Fachbereich Informatik, Universit/it Hamburg,  D-2000 Hamburg 50, West Germany. 

1257 

0022-4715/90/0300-1257506.00/0 �9 i990 Plenum Publishing Corporation 



1258 Koscielny-Bunde 

The effect of learning is to modify the bonds so that the learnt patterns 
become dynamically stable configurations of the network and this way can 
be retrieved. In the Hopfield net, the synaptic efficacies J~,y and Jj, s between 
two neurons are identical and the dynamics is purely relaxational: The 
state of the neuron i at time t + 1 is obtained from the states of all other 
neurons at time t by the deterministic dynamic rule 

S~(t + 1 ) = sign J~,jSj(t) 
j 1 

(1) 

This way, starting from an initial configuration {S(0)} = ($1(0), $2(0),..., 
SN(O)) the system evolves toward the local minima of the energy function 
(cost function 

E = - ~  Ji, jS~S s (2) 
i , j = l  

The local minima are neuron configurations where each neuron Si is 
h N Ji, j S j "  aligned in parallel with its local field i=  ~2j= 1 

The couplings Ji, j are determined by the M random patterns 
{~/'} = ( ~  ..... ~v) which are to be stored in the network. According to 
Hebb, (7) one chooses 

1 M 
J,,j=~ Y~ ~",e; (3) 

# = 1  

The overlap q" between a neuron configuration {S} and a random pattern 
is defined as 

1 N 
q ~ = ~  ~ S , ~  (4) 

i=1  

A particular pattern {~v} is called s tored by the network if an initial 
configuration {S(0)} near {~v} develops under the dynamic rule (1) to a 
state whose overlap with {~v} is large. 

According to Amit eta/., (9) only a certain percentage c~ = M / N  of pat- 
terns per neuron can be stored. For  large nets, rigorous in the limit of an 
infinite number of neurons, the system approaches "retrieval states" which 
have at least 97% overlap with the stored patterns, as long as e is below 
a critical value ec ~ 0.14, As cr decreases to zero, the mean overlap increases 
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exponentially fast toward 1, 1 -  q~exp[-1 / (2c~)] .  Above ac, the system 
flows into a locally stable state, where the remanent overlap is considerably 
smaller, q ~ 0.35. 

Numerical simulations for a Hopfield net consisting of 400 neurons 
have been performed by Kinzel. (11) In the present work, I extend these 
calculations considerably to include also the effect of damage, a case which 
so far has not received a rigorous solution. Other types of damaged 
networks have already been discussed, with respect to different questions, 
by Kfirten. (~2~ 

2. T H E  H O P F I E L D  M O D E L  W I T H  D A M A G E  

I assume that in a damaged network the synaptic efficacies Ji, j =  Jzi 
between pairs of neurons follow the Hebb rule (3) only with probability 
( l - p ) ,  with probability p a bond is broken and Ji, i=J j .~=0.  To 
investigate the Hopfield net under this damage, I have considered a net of 
400 neurons. 

In the first step, random patterns {~},  # =  1,2 ..... M, have been 
generated, and the synaptic efficacies have been calculated according to the 
Hebb rule. In the second step, the network has been damaged by cutting 
the symmetric bonds with probability p. In the third step, one of the 
nominated patterns was chosen. To generate a noisy input pattern, 
the state of each neuron was changed with probability Pn. Accordingly, the 
overlap between noisy input pattern and nominated pattern is 

N 

q~(O)= E s,(o) {f~ 1-2p. (5) 
i = 1  

In the fourth step, then, the dynamic rule is applied to obtain the final 
overlap qf~. The run stopped when the time-dependent overlap qU(t) stayed 
constant for about 20 time steps. For large M, also oscillations of period 
2 with small amplitudes occurred. The run stopped when the amplitudes 
did not change for about 20 time steps. This procedure was repeated for 
typically 102 initial configurations, chosen from different nominated pat- 
terns. For large M, up to 500 initial configurations were considered. By 
averaging the results, I obtained, for a given number M of patterns, for 
fixed initial noise Pn, and for fixed damage parameter p, the mean retrieval 
overlap ~q). 

Figure 1 shows, for fixed initial noise p,, = 0.2, the mean retrieval over- 
lap ( q )  as a function of the concentration p of damaged synaptic efficacies, 
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Fig. 1. Average retrieval overlap {q) as a function of the concentration p of damaged syn- 
aptic efficacies, for several fractions e = M/N of M random patterns, p~ = 0.2, and N= 400. 
Different symbols represent different values of ~: e=4/400 (I) ,  10/400 (A), 16/400 (O), 
25/400 ([]), 35/400 (A), 40/400 (�9 

for various fractions ~ of nominated patterns. Similar pictures were 
obtained for other noise levels. 

Except for M = 4 0 ,  the curves in the figure approach unity as the 
damage parameter approaches zero. The data seem to suggest that the 
approach to unity is exponentially fast, according to 

1 -  {q )  ~ e x p [ - a ( M ) ( 1 - p ) ]  (6) 

with a(M) ~ 1/M increasing when M decreases. An accurate analysis of the 
behavior near unity is beyond the scope of the present work, since it 
requires much larger systems and a large number of configurations. For a 
network consisting of N neurons and for a fixed number K of configura- 
tions, the minimum nonzero difference between {q )  and unity equals 
2/(NK). Accordingly, the exponential decay can only be studied in a p and 
M range where 

1 - {q )  ~ exp[ --a(M)(1 - p) ]  >> 2/(NK) 

This may be the case for some intermediate values of M considered in 
Fig. 1, M = 35, and this curve indeed is described well by (6); for an actual 
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test of (6), however, also smaller M must be studied, which requires much 
larger systems. 

The mean retrieval overlap increases monotonically when the noise 
level decreases. The maximum overlap is obtained for initial configurations 
consisting of the pure patterns, p,, = 0. The dependence of this maximum 
retrieval overlap on the fraction ~ = M/N of nominated patterns is shown 
in Fig. 2, for several values of the damage parameter p. 

The upper curve is for the undamaged case, p = 0. Below c~ = 0.1, { q )  
cannot be distinguished from unity. As c~ increases, ( q )  first decreases 
slightly until c~ 20.15, where { q ) ~  0.96. When c~ is increased further, ( q )  
decays rapidly, reaching a value of 0.76 at c~ =0.175. Below 90% retrieval, 
large fluctuations in the mean retrieval overlap occurred. In this region, the 
data are based on averages over up to 500 configurations each. 

Fig. 2. 
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Average retrieval overlap ( q )  of the pure random patterns versus fraction M/N of 
the nominated patterns, for p = 0  ( 0 ) ,  0.4 (11), and 0.8 (A).  
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It  has to be noted,  however,  tha t  Fig. 2 is in con t ras t  to the findings 
of Kinzel,  (1~) who also cons idered  a ne twork  of 400 neurons.  Whi le  for 
small  ~ bo th  results seem to coincide,  the curves differ s t rongly  at  larger  
values of ~. F o r  example ,  Kinzel  ob ta ined  ( q ) ~ 0 . 9  for ~ = 0 . 2 5  and  
( q )  -~ 0.7 for ~ = 0.5. I t  seems, however ,  tha t  the results of Ami t  eta/.  (9) are 
in favor  of Fig. 2. Ami t  et al. found, for very large networks ,  a sharp  
t rans i t ion  at  ~c ~ 0.14. In  smal ler  ne tworks  such as the one cons idered  here, 
one expects  qual i ta t ive ly  s imilar  behavior ,  but  with a b r o a d e n e d  t rans i t ion  
regime, in ana logy  to the s i tua t ion  in cri t ical  p h e n o m e n a  (see, e.g., ref. 13); 

and  this is wha t  is observed  in Fig. 2. 
The effect of  damage  is to shift the a b r u p t  decay to smal ler  values of 
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Fig. 3. Phase boundary of the fraction M/N of learnt random patterns as a function of the 
damage parameter p, for the initial noise pn =0 (O), 0.1 (A), 0.2 ([3), 0.3 (O), and 0.4 (A). 
In the left region of the curves in (a), noisy patterns are recognized with less than 0.5% error 
( (q)  ~<0.99). In the left region of the curves in (b), noisy patterns are recognized with less 
than 5% error ((q)~<0.90). 
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Fig. 3. (Continued) 

~. The transition region broadens slightly when the damage parameter  is 
enhanced. 

Figures 3a and 3b show the maximum number of patterns which can 
be stored with less than 0.5% and 5% error, as a function of the damage 
parameter  p, for various values of initial noise Pn- For  Pn = 0, the number 
of patterns that can be stored is, to a very good approximation,  a simple 
straight line, 

M(p, p,, = 0 ) =  M(0, p,, = 0)(1 - p )  (7) 

As the initial noise increases, the curve bends down for small p values. 
There exists a crossover value pX(p,), which increases with increasing noise 
level. Above p", c~- M/N follows (7); below pX, c~ bends down. For large 
noise, the curve becomes rather flat, showing only a weak dependence on 
the concentration p of damaged synaptic eft]cacies. 
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Qualitatively, Fig. 3b is similar to Fig. 3a, but  as the accuracy of 
retrieval is decreased in Fig. 3b, the curve for the pure patterns no longer 
follows a straight line, and the max imum value of M/N is enhanced. It is 
anticipated that the relatively smooth  transit ion between retrieval and non- 
retrieval is an effect of the finite size of the network. In the idealized case 
of an infinite number  of neurons, the transit ion should be abrupt,  and 
Figs. 3a and 3b should become identical. 

The max imum number  of patterns which can be stored with less than 
0.5% and 5% error, as a function of the initial noise Pn, is shown in 
Figs. 4a and 4b for various values of  the concentra t ion p of damaged  
synaptic efficacies. For  p = 0 ,  the data  agree well with the result of 
Kinzel. (m The effect of the damage is twofold: The number  of r andom 
patterns which can be stored is reduced and, with an increasing amoun t  
of damage,  becomes less sensitive to initial noise. 
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Fig. 4. Maximum fraction M/N of learnt random patterns that are recognized (a) with less 
than 0.5% error and (b) with less than 5% error, as a function of initial noise p,, for several 
values of the damage parameter p: p = 0  (�9 0.2 (A), 0.4 ([5]), 0.6 (0), 0.8 (&). 
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Fig. 4. (Continued) 
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